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ABSTRACT Since the goal of image retargeting is to adapt source images on target displays with different
sizes and aspect ratios, how to objectively evaluate the quality of retargeted images is particularly important
to optimize the retargeting operations. In this paper, we proposed a new image retargeting quality assessment
metric, which constructs the metric using both hand-crafted features and deep-learned features. To enhance
the reliability and accuracy of the proposed method: 1) we use similarity transformation as local descriptor
to extract hand-craft features, and measure structure distortion and content loss from the hand-craft features
and 2) we use deep learning architecture to construct encoders and extract deep-learned features, and
measure texture similarity and semantic similarity from the deep-learned features. We conduct experiments
on two databases: RetargetMe and CUHK. Experimental results show that our method can achieve superior
performance to the state-of-the-art metrics.

INDEX TERMS Image retargeting quality assessment, hand-crafted feature, deep-learned feature, structure
distortion, content loss.

I. INTRODUCTION
With the rapid development of mobile devices, such as
smart phones and tablets, image retargeting has received
much attention in recent years, which aims to adapt source
images on target displays with different sizes and aspect
ratios [1]–[3]. Even the traditional manual cropping (CR) and
linear scaling (SCL) methods can achieve the goal, the limi-
tation of these methods is that they do not take the diversity
of image content in account, leading to poor visual quality.
Recently, content-aware image retargeting has received con-
siderable attention due to the advantages in balancing the
structure distortion and content loss.

The existing content-aware image retargeting algorithms
can be broadly classified into two categories: discrete
and continuous approaches. Discrete methods resize an
image by iteratively removing or inserting pixels in the
less important regions. Seam-Carving (SC) [4] and Shift-
Maps (SM) [5] are two representative discrete approaches.
Even intuitive, the disadvantage of discrete approaches is
that it may lead to noticeably jagged edges and artifacts in
image objects. In contrast, Warping (WARP) [6], Streaming

Video (SV) [7], Scale-and-Stretch (SNS) [8] and Multi-
Operators (MULTIOP) [9] provide continuous solutions to
keep important areas. Each continuous approach has its
advantage and disadvantage in addressing the structure distor-
tion and content loss for different retargeting operators [10].
Particularly, MULTIOP approach provides better result than
other single operator by using the best combination of various
operators. Therefore, it is significant to develop an effec-
tive objective image retargeting quality assessment (IRQA)
method to improve the retargeting techniques and select the
best retargeting operator [11], [12].

Different from traditional image quality assessment (IQA)
that mainly evaluates fidelity, structure distortion and content
loss are two crucial factors for quality degradation in IRQA.
Moreover, due to the retargeting operations, the resolutions
of the source and retargeted images are quite inconsistent,
thus traditional IQA methods, such as Peak Signal to Noise
Ratio (PSNR), structural similarity index (SSIM) [13], and
feature similarity (FSIM) [14], cannot be directly applied to
IRQA. Since the purpose of IRQA is to establish the map-
ping between the source and retargeted images and measure
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their distance as similarity index, most IRQA methods use
hand-crafted features to calculate and measure the distance
between the matched pixels. Although these features can
represent the distortion levels of the retargeted images to
a certain extent, the reliability of hand-crafted features is
largely dependent on the accuracy of correspondence match-
ing. In addition, hand-crafted features are usually low-level,
lacking semantics and discriminative capacity.

Inspired by recently popular deep convolution neural net-
works (CNNs) that extract the high-level information by
developing deep architectures in image based tasks [15]–[17],
we use CNN model proposed in [16] as feature extractor,
and propose a new framework that uses hand-crafted and
deep-learned features for IRQA. As discussed, different retar-
geting operators may cause different degrees of structure
distortion and content loss, which will affect the semantic for
understanding, but the hand-crafted features cannot capture
such information. Therefore, this paper takes a different view
of this problem and supplies the hand-crafted features with
deep-learned representations. The overall target of this work
is to provide a solution for IRQA by combining both hand-
crafted and deep-learned features. The main contributions of
our work are two-fold: 1) We use similarity transformation
as descriptor to establish the relationship between the source
and retargeted images and devise a pyramidal model to obtain
multi-scale structure distortion, and measure the area change
in each grid of retargeted images to capture the image con-
tent loss; 2) We construct CNN architecture as encoder to
extract deep-learned features, including texture feature and
semantics feature from bottom layer and top layer of CNN
respectively, and measure texture similarity and semantic
similarity to improve the prediction accuracy of IRQA.

The rest of this paper is organized as follows. In Section II,
we present related works and motivations for this work.
We detail the proposed method in Section III, and finally
present experimental results in Section IV and conclusions
in Section V.

II. BACKGROUND
A. RELATED WORKS
The early IRQA methods mostly utilize intensity or color
distance to measure the quality of retargeted images, but
the evaluation results are commonly unsatisfactory. Edge
Histogram (EH) [18] and Color Layout (CL) [19] are
two IRQA methods in MPEG-7 standard, which use
histogram distance and color distribution as representa-
tions respectively. Bi-Directional Similarity (BDS) [20] and
Bi-Directional Warping (BDW) [9] calculate bidirectional
mapping distances between the patches in the source and
retargeted images as measurements. However, these two
methods ignore the importance of image contents and have
low correlation with subjective ranking. SIFT-flow [21]
uses SIFT descriptors to establish the matching relationship
between the source and retargeted images, and the cost func-
tion based on the displacements of adjacent pixels is applied

to measure the dissimilarity of two images. Earth mover’s
distance (EMD) [22] solves a transportation issue instead
of solving a matching issue, and the minimal cost in trans-
forming the source signature to match a target signature is
measured as similarity index. Relatively, SIFT-flow and EMD
metrics can capture the structural properties of an image,
and have high consistency with subjective rankings compared
with EH, CL, BDS and BDW. However, SIFT-flow and EMD
still ignore the influence of critical content loss in IRQA.

In recent years, IRQA has received extensive atten-
tions with the development of image retargeting techniques.
Fang et al. [23] devised a multi-scale SSIM (IR-SSIM)metric
to measure how the structural information in source image is
preserved in the retargeted images. Hsu et al. [24] defined
a weighted combination of geometric distortion and con-
tent loss as the similarity of two images. In this method,
geometric distortion is measured by the local variance of
SIFT-flow and content loss is calculated from the saliency
area loss. Zhang et al. [12] elaborated the geometric change
by a backward registering in Markov random field and mea-
sured the aspect ratio similarity (ARS) in local blocks to
reveal the geometric change, but the ARS metric does not
take global distortion of the retargeted images into consider-
ation. Liang et al. [25] incorporated the factors of similarity,
aesthetics and symmetry to predict the quality of retargeted
images. Karimi et al. [11] define three groups of features
including shape features, area features and aspect ratio to
reveal the geometric distortion and content loss based on
dense correspondence between the scaled and retargeted
images. However, the above methods relied on accurate
correspondence matching and effective feature descriptors.
Recently, Jiang et al. [26] evaluated the quality of retargeted
images by learning two over-complete dictionaries. This
method does not need correspondence matching between
the source and retargeted images and can capture high-level
information of retargeted images by the dictionaries. Other
relevant works can be found in [27]–[29].

Deep learning techniques have been achieved astonish-
ing advances in recent years, and there have been a num-
ber of attempts to develop deep CNN architectures for
image recognition [30], [31], image repairing [32], image
segmentation [33], image denoising [34] and super resolu-
tion [35], [36]. Cho et al. [37] employed deepCNN for image
retargeting, which can be classified into two steps: learning
an attention map via end-to-end training and generating a
content-aware shift map for image retargeting. Thus, content
and structure loss of the retargeted images can be computed
from image-level annotations. Zhang et al. [38] used a CNN
model to learn the local structures of stereoscopic image for
no-reference quality assessment. In the method, using image
patches as inputs, high-level representations are summarized
as final quality scores, which are learned with multiple layers
architecture of CNN. Kim and Lee [39] adopted a full ref-
erence IQA metric to obtain the quality score of each patch
as label information, and trained a local patch-based CNN
model for no-reference IQA. Kao et al. [17] employed a
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multi-task deep CNNmodel to automatically assess the qual-
ity of aesthetic images, and meanwhile capture the important
semantic information of each aesthetic image. Although deep
learning techniques have been adopted in image retargeting
and IQA applications, how to utilize the technique in IRQA
is still challenging due to the limitations in lacking of enough
samples for training.

FIGURE 1. Similarity transformations for four typical retargeting
operators.

B. MOTIVATIONS
Traditional hand-crafted features require local descriptors,
such as SIFT [40], Histogram of Gradient (HOG) [41],
Histogram of Optical Flow (HOF) [42], to extract key points
and establish their mapping relationship. However, the limi-
tation of these local descriptors in image retargeting is that
they cannot capture the intrinsic formation mechanism of
structure distortion and content loss which are caused by dif-
ferent retargeting operators. Due to the high performance of
warping operator for image retargeting, we are motivated to
use warping operator (described by similarity transformation)
as local descriptor to simulate different retargeting operators
and extract hand-crafted features. Thus, the deviations in the
similarity transformations for different retargeting operations
can reflect the deformations imposed on the local grids.
As shown in Fig. 1, using similarity transformation as local
descriptor for different discrete methods (CR and SC) and
continuousmethods (SCL andWARP), the errors between the

retargeted image and its reconstrued one are comparatively
small, indicating high similarity.

The warping descriptor aims to find an optimal transfor-
mation based on limited control points. Let P = {pi} be a
handle with m distinct control points, its deformed position
be P′ =

{
p′i
}
, the distortion energy is defined as [1]:

ε(P′,P) = min
s∈S

m∑
i=1

|s(pi)− p′i|
2 (1)

where S is the set of similarity transformations. Obviously,
similarity transformation serves as an intermediary between
the source and retargeted images to control the deformation
of each grid. For example, a large bias of the similarity
transformations from the benchmark ones usually leads to
serious geometric distortion and content loss.

From another aspect, CNN has been successfully used to
generate image feature maps such as semantics map [33] and
structure map [16]. At the lower layers of the baseline CNN,
features such as gradients and edges are learned, while at the
higher layers, the learned features contain meaningful infor-
mation that can describe the semantic characteristics [15].
The most important information in the content-aware image
retargeting is semantic information, IRQA is a high-level task
that should understand images in global perspective. Based on
these observations, to utilize semantic information in IRQA,
we use CNN architecture to construct different encoders for
the source and retargeted images, and extract low-level and
high-level features (including texture and semantic informa-
tion) to generate the deep-learned feature representation.

III. PROPOSED METHOD
In this paper, we propose a IRQA using hand-crafted and
deep-learned features, as shown in Fig.2. The key of IRQA
motivated in this method is to dig the low-level and high-
level features as feature representation. Thus, the overall
framework of the proposed method is composed of two chan-
nels: the first channel constructs similarity transformation as
local descriptor to extract hand-crafted features, and calcu-
lates structure distortion and content loss for measurement.
The second channel uses CNN architecture to construct an
encoder, and extracts texture feature and semantics feature
from the bottom layer and top layer of the CNN. Different
with state-of-the-art IRQAmethods that rely on low-level fea-
tures and accurate correspondences, our method simultane-
ously uses hand-crafted features and deep-learned features to
estimate the perceptual quality degradation. In the following
sections, we will elaborate on each channel of our method.

A. HAND-CRAFTED FEATURE REPRESENTATION
1) SIFT-FLOW ESTIMATION
As discussed, we use similarity transformation as local
descriptor to extract hand-crafted features. The primary task
is to establish pixel-to-pixel correspondences between the
source and the retargeted images, and convert into a field of
transformation. In this work, we use SIFT-flow algorithm [21]
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FIGURE 2. Overall architecture of the proposed method for image retargeting quality assessment.

to extract dense SIFT descriptor for each pixel in both source
and retargeted images to build up the correspondence.

2) MULTI-SCALE STRUCTURE DISTORTION MEASUREMENT
As the purpose of this step is to establish the similarity trans-
formation, pixel-wise correspondence cannot obtain such
mapping relationship. Refer to warping operator, a set of
regular grids are first extracted in the source image. Then,
based on the pixel-wise correspondences for four vertexes
in a grid, a similarity transformation for the grid can be
established. In our case, transformations are a set of 2D affine
matrices to represent scaling, rotation and translation, which
can be obtained from four vertexes of a grid by M-estimator
algorithm [43]. Let {vk , k = 1, · · · ,N } be a set of grids in the
source image (N is the number of grids in the source image),
and {ṽk , k = 1, · · · ,N } be the corresponding grids in the
retargeted image established by correspondence matching,
similarity transformation can be formulated as:[

x ′

y′

]
=

[
a b m
c d n

] xy
1

 = Pk

 xy
1

 (2)

where Pk is the similarity transformation matrix. Considering
that scaling and rotation will affect structure distortion while
translation itself will not cause structure distortion, we define
a benchmark transformation matrix PB as follows:

PB =
[
1 0
0 1

]
(3)

Since only two scaling parameters (a and d) and two
rotation parameters (b and c) will have a negative effect
on structure distortion, we calculate the distance between
a similarity transformation matrix and the benchmark

transformation matrix to measure the degree of structure
distortion. The distance defined in this work is composed
of two components: the absolute distance (AD) and aspect
ratio (AR) change, defined as follows:

η = ‖Zk − PB‖22︸ ︷︷ ︸
AD

+ (a− d)2 + (b− c)2︸ ︷︷ ︸
AR

(4)

where

Zk =
[
a b
c d

]
.

In the equation, the translation parameters (m and n) are
not included, because translation itself will not produce any
structure distortion.

Since the motivation of warping-based retargeting is to
preserve important shapes and avoid over-deformation for
the high-significance objects, the structure distortion defined
in this work is calculated with the significant values as
weighting:

f1 =
∑
vk

Svk · e
−ηvk

/∑
vk

Svk (5)

where Svk is the average saliency value of a grid in the source
image. In this paper, we use Hierarchical saliency detection
algorithm (HS) [44] to grade the importance of different
regions. Thus, large f1 value means small structure distortion
for the retargeted image. In addition, to indicate the influence
of grid’s size, we provide amulti-scale solution that uses three
different sizes (32 × 32, 16 × 16 and 8 × 8) to measure the
structure distortion, denoted as f1, f2 and f3 respectively.
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3) CONTENT LOSS MEASUREMENT
Besides the structure distortion, content loss is another impor-
tant factor in image retargeting, which may destroy the
completeness of image content and further affect human’s
understanding of the scene. The above structure distortion
measurement can reflect a certain content loss for most retar-
geting operators, however, for the cropping operation, if a
grid in the source image cannot find the corresponding grid
in the retargeted image (the information is discarded in the
retargeted image), the above structure distortion measure-
ment cannot capture such information. Thus, we make an
assumption that if a grid has the same area in both source
and retargeted images, the information in this grid is well
preserved. Towards this end, we design a simple yet effective
metric that calculates the change of grid’s area to obtain the
content loss:

f4 =
∑
vk

Svk ·
A(ṽk )
A(vk )

/∑
vk

Svk (6)

where A(vk ) and A(ṽk ) are the areas of the grids in the source
and retargeted images respectively. Thus, large value of A(ṽk )A(vk )
means more salient information is preserved in the retargeted
image. Particularly, A(ṽk )A(vk )

= 0 reflects the grid is discarded in
the retargeted image.

B. DEEP-LEARNED FEATURE REPRESENTATION
Although the above multi-scale structure distortion and con-
tent loss measurement can effectively capture the low-level
deformations, but it ignores the texture change in each grid,
and the content loss defined above only measures the local
information loss. Besides, these two features are highly
dependent on the accuracy of correspondence matching and
the reliability of image saliency information. Thus, in order
to compensate the limitations of the hand-crafted feature
representation, we explore high-level information of retar-
geted images. In this paper, we adopt pre-trained VGG16 net-
work [16] to construct encoders for the source and retargeted
images, and then measure texture similarity and semantic
similarity from the deep-learned features. The structure of the
VGG16 network is shown in Fig. 3.

FIGURE 3. The structure of the VGG16 network.

1) TEXTURE SIMILARITY MEASUREMENT
As discussed in [15], activations from bottom layers of
CNN architecture provide low-level structural information.

Therefore, we utilize activations from conv1-1 of VGG16 for
the computation of texture similarity to overcome the limita-
tions of the multi-scale structure distortion. There are 64 fea-
ture maps in conv1-1, and we only choose the first feature
map for IRQA task. The feature map extracted from conv1-1
of VGG16 is shown in Fig. 4.

FIGURE 4. Image texture information from conv1-1: (a) and (d) Source
images; (b) and (e) Retargeted images by SC; (c) and (f) Retargeted
images by WARP.

Then, we detect texture change by calculating the
homogeneity value of Gray Level Co-occurrence Matrix
(GLCM) [45]. GLCM is one of the stable feature extraction
methods. In this paper, two typical texture features (energy
and entropy) are extracted from each GLCM. The energy is
used to describe the gray-level distribution and the entropy
can capture the size of texture. The higher values of the
energy and entropy, the more texture information would be
contained in the image. The functions of energy and entropy
are defined as:

Eθ =
K∑
i=1

K∑
j=1

p2d,θ (i, j) (7)

Hθ = −
K∑
i=1

K∑
j=1

pd,θ (i, j) log2 pd,θ (i, j) (8)

where pd,θ (i, j) is the GLCM, d is the distance between two
pixels (d = 1 in this paper), θ is the orientation, and K is the
quantized gray level (K = 8 in this paper).
After computing the GLCM of four different orienta-

tions (0◦, 45◦, 90◦ and 135◦), the energy similarity and
entropy similarity between source and retargeted images are
defined as:

γe = exp

(
−

∑
θ

(
ERθ − E

S
θ

)2)
(9)

γh = exp

(
−

∑
θ

(
HR
θ − H

S
θ

)2)
(10)

where ESθ and ERθ are the energies for the source and retar-
geted images, respectively, and HS

θ and HR
θ are the entropies

for the source and retargeted images, respectively.
By integrating the energy similarity and entropies similar-

ity using multiplication combination, the texture similarity
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between the source and retargeted images is defined as:

f5 = γe · γh (11)

2) SEMANTICS SIMILARITY MEASUREMENT
Different from the content loss that calculates the changes of
local areas, in this section, we design a global measurement
to obtain the high-level semantics information. We capture
the high-level semantics information from the top layer of
VGG16 to detect the ambiguous and inconsistent understand-
ing between the source and retargeted images. In our exper-
iments, the last classification layer of VGG16 is removed,
and the output from the second full connection layer is rec-
ognized as the semantics feature. The semantics similarity is
defined as:

f6 =
1
M

M∑
i=1

pi (12)

where M is the number of fc7 output (shown in in Fig. 3),
fS = [f S1 , · · · , f

S
i , · · · , f

S
M ] and fR = [f R1 , · · · , f

R
i , · · · , f

R
M ]

are the outputs of fc7 layer for the source and retargeted
images respectively. In particular, we normalize f6 through
a square threshold to reduce the influence of deformation on
object detection:

pi =

{
1, if

(
f Ri − f

S
i

)2
< 1.5

0, else
(13)

FIGURE 5. Example of semantics similarity scores for different retargeting
operators.

Here, we set threshold as 1.5 empirically with the best
performance. As an example, we illustrate the semantics
similarity score for different retargeted images in Fig. 5.
We can find that, CR has the worst semantics similarity score,
while SCL has the best result. The reason is intuitive that
CR will cause serious content loss, while the objects can
be well preserved in the image retargeted by SCL, although
stretching or squeezing may distort the entire image.

C. QUALITY EVALUATION
With the estimated scores f1, f2, f3, f4, f5 and f6, we train a
regression model that maps the 6-dimensional feature vec-
tors to the associated quality scores. In our implementation,
a support vector regression (SVR) is adopted to train the
function. In addition, we utilize the widely used radial basis
function (RBF) kernel to nonlinearly combine the quality
scores.

IV. EXPERIMENTAL RESULTS AND ANALYSES
A. DATABASES
In this paper, two widely-used databases including Retar-
getMe [46] and CUHK [47] are used for performance eval-
uation in our experiment. The brief introductions about these
databases are as follows:

RetargetMe database consists of 37 source images which
are classified into 6 major attributes including lines/edges,
face/people, texture, foreground objects, geometric struc-
tures and symmetry. Note that one source image may have
one or more attributes. Each source image has been retar-
geted by eight typical retargeting operators, including SC [4],
WARP [6], SV [7], SM [5], SNS [8], MULTIOP [9], CR and
SCL. Thus, total 296 retargeted images are included in the
database. The ground-truth subjective score of each image in
the database is recorded as the number of times that the image
is preferred over other retargeted images.

The CUHK database contains 171 retargeted images
obtained from 57 source images. For each source image,
three different retargeting operators are applied which
are randomly selected from ten representative operators,
including the eight operators used in RetargetMe database
and other two operators namely optimized seam carv-
ing and scale (SCSC) [10] and energy-based deforma-
tion (ENEN) [48]. Similar to traditional IQA study, the mean
opinion score (MOS) is generated for each retargeted image
as the subjective quality score via five-grade ranking.

In the CUHK dataset, we randomly divide all images into
two groups, 20% are chosen for testing and 80% are chosen
for training. We repeat such train-test procedure 1000 times
and obtain the average performance as the final quality score.
To compare objective and subjective scores, we first fit the
objective scores using the following five-parameter mapping
function:

f (x) = β1

(
1
2
−

1
1+ eβ2(x−β3)

)
+ β4x + β5 (14)

where β1, β2, β3, β4 and β5 are parameters to be fitted. Thus,
we apply Pearson linear correlation coefficient (PLCC),
Spearman rank order correlation coefficient (SROCC), root
mean square error (RMSE) and outlier ratio (OR) to evaluate
the performance. Larger SROCC and PLCC indicate better
performance of the objective quality measure, while a smaller
RMSE and OR indicate higher correlation between objective
prediction values and subjective scores.

However, subjective scores in RetargetMe database only
indicates the relative ranking scores against other images,
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TABLE 1. Performance of different methods on RetargetMe database.

which are not suitable for training a model. Therefore, we use
the SVR model trained on whole CUHK database to predict
the quality scores of all images in RetargetMe database. Refer
to [46], we useKendall RankCorrelation Coefficient (KRCC)
to evaluate the model performance. Here, KRCC = 1 denotes
the best performance while KRCC = −1 means the worst
result. The KRCC is defined as:

KRCC =
nc − nd

0.5n(n− 1)
(15)

where n is the length of the ranking and n = 8 in the
RetargetMe database, nc is the number of concordant pairs,
nd is the number of dis-concordant pairs.

TABLE 2. Performance of different methods on CUHK database.

B. PERFORMANCE COMPARISONS WITH
OTHER METHODS
To objectively evaluate the performance of our method,
we compare it with state-of-the-art IRQA methods, includ-
ing BDS [20], EH [18], SIFT-flow [21], EMD [22], and
IR-SSIM [23], Liang’s method [25], PGDIL [24], and
ARS [12]. Table 1 gives comparisons of mean and standard
deviation values of KRCC values as well as p-value on the
RetargetMe database. Table 2 gives the comparison results

of PLCC, SROCC, KRCC and RMSE values on the CUHK
database. From the tables, we can make the following obser-
vations: 1) In the RetargetMe database, our method always
performs well on all attributes except Faces People, but it is
especially prominent on other attributes. The reason may be
that our method is more effective to detect shape and structure
distortions by involving deep-learned texture and semantic
features, while other methods do not have such consideration.
The overall performance of our method is also obviously bet-
ter than other methods. 2) In the CUHK database, our method
outperforms than other methods as expected, because our
method takes low-level hand-crafted features and high-level
deep-learned features into account. In Fig. 6, we compare the
individual KRCC values of SIFT-flow, ARS and our method
for the 37 image sets from RetargetMe database. Compared
with other two methods, our method shows comparatively
reliable and stable quality prediction without obvious fluc-
tuations. Overall, our method can achieve good performance
on predicting the quality of retargeted images.

C. PERFORMANCE OF HAND-CRAFT FEATURES
AND DEEP-LEARNED FEATURES
To further analyze the effectiveness and influence of the hand-
craft and deep-learned features in evaluating the perceptual
quality, we design the following schemes for comparisons:
only using the hand-craft features, the deep-learned features
and the integrated features (due to the limitation of space in
the table, we use ‘HC’, ‘DL’ and ‘All’ to represent three types
of features, respectively) with three typical quality combina-
tion methods. The used average and multiply combination
methods do not need training process. Table 3 shows the com-
parison results of these measurements. We can make the fol-
lowing observations from the table: 1) Compared with results
obtained using the hand-craft features and deep-learned fea-
tures, the hand-craft features are more important to evaluate
the quality whose performance is better than that of the deep-
learned features; 2) The best performance is obtained by
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FIGURE 6. The individual KRCC results of SIFT-flow [21], ARS [12] and our method the 37 image sets on
RetargetMe database.

TABLE 3. Performance comparison of different quality pooling methods on RetargetMe and CUHK databases.

TABLE 4. Performance of each quality component on RetargetMe and CUHK databases.

fusing the two types of features; 3) Since the average and
multiply combinations do not need a training process, their
performance are worse than the non-linear model trained
by SVR.

D. PERFORMANCE OF EACH QUALITY COMPONENT
We further analyze the individual contribution of each quality
component (f1, f2, f3, f4, f5 or f6) in our method: structure
distortions (f1, f2 and f3), area loss (f4), texture similarity (f5),
and semantics similarity (f6). Table 4 shows the comparison
results of these measurements. We can make the follow-
ing observations from the table: 1) Each measurement has
its respective role in characterizing the structure distortion
and content loss, and independently applying the quality
component cannot obtain the best results on two databases;
2) Among these measurements, structure distortions have the
great influence on the overall performance. The reason is that
it can effectively capture the geometric distortion through
the similarity transformation; 3) Although the performance

of deep-learned features (f5 and f6) are not good enough,
they can capture high-level information to compensate the
limitations of the hand-crafted features. So that, the inte-
grated results are obviously better than those of independent
ones.

To better explain the effect of each quality component,
we test a set of retargeted images generated by different
retargeting operators shown in Fig. 7 and reports the corre-
sponding quality values in Table 5. From Table 5, we can
find the influence of each component intuitively: 1) Discrete
methods (CR, SC and SM) directly remove some background
regions, leading to semantics information change and lower
semantics similarity (f6); 2) For the CR operator, since the
geometric distortion is not significant, the measured structure
distortions and texture similarity are better than other quality
values; 3) Due to little texture changes in these retargeted
images, the values of f5 are larger than other quality values;
4) Since the car is the most significant information in the
scene, the image retargeted by SNS will seriously reduce the
size of the car, leading to larger content loss (f4).
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FIGURE 7. Original image and its corresponding retargeted images generated by
different retargeting operators.

TABLE 5. The predicted quality values of different metrics for retargeted images in Fig. 7.

E. DISCUSSIONS
In this paper, we attempt to combine hand-craft features and
deep-learned features to promote the performance of IRQA.
Although the experiment results have demonstrated the effec-
tiveness of our method in comparison with state-of-the-art
IRQA methods, it still has some limitations: 1) The hand-
craft features in our method are highly dependent on accurate
correspondences between the original and retargeted images
to construct the similarity matching relationship. However,
SIFT-flow has its limitation in capturing structure features,
especially in smooth areas; 2) Due to the limitations of the
existing image retargeting databases, we use the pre-trained
encoder to extract the deep-learned features. The issue should
be solved by establishing the deep learning network between
the source input and the retargeted output. Thus, structure loss
and content loss can be derived directly from the network.

V. CONCLUSIONS
In this paper, we propose a new image retargeting quality
assessment (IRQA) method using hand-crafted and deep-
learned features. Using similarity transformation as descrip-
tor to extract hand-craft features, we measure structure
distortion and content loss from the hand-craft features.
Using deep learning architecture to construct an encoder and
extract deep-learned features, we measure texture similar-
ity and semantic similarity from the deep-learned features.

Compared with other metrics, our method achieved the best
performance on both RetargetMe and CUHK databases. For
future work, we will focus on designing more effective high-
level features for IRQA.
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